Separated morphisms (Har II4, Shaf I 4.3)

Recall that a topological space is Hausdorff iff the image of the diagonal map (id, id): X→X×X is closed. However the underlying topological space of a scheme is almost never Hausdorff (many points are not even closed!). The analogue of the Hausdorff property for schemes is separatedness.

Def: A morphism $f: X \rightarrow Y$ is <u>separated</u> if the diagonal $\Delta: X \rightarrow X \times_Y X$ is a closed immersion. In this case, we say X is <u>separated</u> over Y.

Remark: If X is a scheme of finite type over C, we can give X The structure of a complex analytic space, and X is separated over Spec C (=>) The analytic topology on X is Hansdorff. For any ring R, there is a unique homomorphism $\mathbb{Z} \to \mathbb{R}$. \mathbb{Z} is called an initial object in the category of rings. Thus, there is a unique morphism Spec $\mathbb{R} \to \text{Spec }\mathbb{Z}$. Since every scheme X is covered by open affines, any morphism $X \to \text{Spec }\mathbb{R}$ must be unique. In fact, there is always such a morphism (Exercise).

Def: A schume X is separated if it is separated over
$$\mathcal{R}$$
.
 $\mathcal{U}_{1} \cup \mathcal{U}_{2}$
EX: let X be the affine line over k with doubled origin.
The scheme $X \times_{k} X$ is covered by four open affines,
each isomorphic to $A_{k}^{1} \times_{k} A_{k}^{1} \cong A_{k}^{2}$, and is roughly
 U_{i} U_{j} V_{ij}
 A_{k}^{2} W/ doubled axes and four
origins. The image of X intersected
W V_{12} has closed points (x, x)
s.t. $x \in U_{1} \cap U_{2}$, which is the
line $y = x$ minus the origin, which rs not closed.
Thus X is not separated over k.
 \mathcal{U}_{i} \mathcal{U}

Prop: Any morphism of affine schemes f: SpecA -> SpecB is separated.

 \underline{PF} : Spec A × spec B Spec A = Spec (A $\otimes_{B} A$), and the diagonal

morphism corresponds to the ring map $A \otimes_A \rightarrow A$

$$a_1 \otimes a_2 \longmapsto a_1 a_2$$

which is surjective. Thus Δ is a closed immersion.

Cor: A morphism $f: X \rightarrow Y$ is separated $\iff \Delta(X) \subseteq X \times_Y X$ is closed.

(=) Need to show: $\Delta: X \to \Delta(x)$ is a homeomorphism and $\mathcal{O}_{X*,yX} \to \Delta_* \mathcal{O}_X$ is surjective.

Since the composition $X \xrightarrow{\Delta} X \times_y X \xrightarrow{P_i} X$ is the identity, Δ must be a homeomorphism.

Now take $P \in X$ and $U \subseteq X$ a shood of P small enough so that $f(u) \subseteq V$, an open affine in Y. Then $U \times_{V} U$ is an open affine neighborhood of $\Delta(P)$, and $\Delta: U \rightarrow U \times_{V} U$ must be a closed immersion by the prop. Thus, the map of sheaves $\mathcal{O}_{X \times_{V} X} \longrightarrow \Delta_{K} \mathcal{O}_{X}$ is surjective in a heighborhood of P, so it's surjective. (Do you see why this is sufficient?). \square

Valuative criterion of separatedness

Roughly, X is separated if for any curve C and P∈C, given a morphism C-EP3 → X, there is at most one way to extend the map to all of C. Of course A' w/ doubled origin fails:

This is a local condition, so we can give a criterion on the stalk of C at P, which is a DVR (or more generally a valuation ring). We first review some algebra:

Def: Let K be a field and G a totally ordered abelian group (usually \mathbb{Z}). A valuation of K w/ values in G is a map $v: K - \varepsilon^3 \longrightarrow G$ s.t.

•
$$v(xy) = v(x) + v(y)$$
, and
• $v(x+y) \ge \min(v(x), v(y))$.

The subring $R = \{x \in K \mid v(x) \ge 0\} \cup \{0\}$ is a <u>valuation ring</u> if it's an integral domain W/ field of fractions K. R is local w/ max'l ideal $m = \{x \in K | v(x) > 0\}$.

Equivalently, a Noetnevian integral domain R is a DVR \iff R is local and not a field and its maximal ideal is principal.

EX:
$$R = k[x]_{(x)}$$
 is a DVR w/ valuation $k(x) - \{0\} \rightarrow \mathbb{Z}$
given by $ux^{n} \mapsto n$ (w/ na unit in R).

Def: If A, B are local rings contained in a field K,

$$B \underline{dominates} A$$
 if $A \subseteq B$ and $m_B \cap A = m_A$
(m_A and m_B the max'l ideals of A and B, respectively).

let K be a field, X a scheme. Then a
morphism Spec
$$K \rightarrow X$$
 is equivalent to a
point x $\in X$ and an inclusion $k(x) \subseteq K$.

$$\mathcal{O}_{\mathbf{x},\mathbf{x}} \longrightarrow \mathcal{K}$$

with kernel m_{x} , so $k(P) = \overset{\mathcal{O}_{x,x}}{m_{x}} \overset{\mathcal{O}}{\longrightarrow} K$.

If instead we replace Speck w/ Speck, where R is a valuation ring of K, we get the following:

Lemma: let
$$T = \operatorname{Spec} R$$
, with R as above. Then a
morphism $T \to X$ is equivalent to a choice of
points $x_0, x_1 \in X$ with $x_0 \in \{x_i\}$ (i.e. x_1
specializes to x_0 , written $x_1 \mapsto x_0$) and an
inclusion of fields $k(x_1) \subseteq K$ such that R dominates
 $\mathcal{O}_{x_0,z}$, where Z is the subscheme $\{x_1\}$ with
its reduced induced structure.

Pf: let
$$t_0 = m_R \subseteq R$$
 the maximal ideal, and $t_1 = (0)$
The generic point.

Consider a morphism $T \rightarrow X$, and let x_0 and x_1 be the images of t_0 and t_1 . Then the morphism factors through Z: $T \rightarrow Z$ X

Since
$$x_1$$
 is the generic point of Z and Z is
reduced, $O_{x_1,Z}$ is a field (see HW 3), so
 $k(x_1) = O_{x_1,Z}$, and it is the field of fractions of $O_{x_0,Z}$.
So we have local homomorphisms

and
$$k(x_i) \longrightarrow \mathcal{O}_{t_i,SpecR} = K$$

Conversely, given x_0, x_1 and an inclusion $k(x_1) \subseteq K$ s.t. R dominates Ox, z, we have an inclusion Ox, Z S Which thus induces a morphism T → Spec Ox., Z.

Composing this w/ the map $\operatorname{Spec} \mathcal{O}_{x_0, 2} \to X$ we get a morphism T→X. D

We now state the valuative criterion of separatedness. For poof, see Hartshorne.

Noetherian Ihm (valuative Criterion of Separatedness) Let f: X -> Y be a morphism of schemes. I is separated iff the following holds: For any valuation ring R W/ quotient field K, let $T = \operatorname{Spec} R$, $U = \operatorname{Spec} K$, $i : U \to T$. Given morphisms T→Y and U→X s.t. The following commutes

There is at most one morphism T -> X making the whole diagram commute.

From the theorem, we get several useful corollaries:
Cor: a) Open + closed immersions are separated.
b) A composition of separated morphisms is separated.
c.) Separated morphisms are stable under base extension (i.e. if X→Y is separated and Y'→Y some morphism, then X×yY' → Y' is

separated). d.) $f: X \rightarrow Y$ is separated $\iff Y$ has an open cover

$$\{V_i\}$$
 s.t. $f^{-1}(V_i) \rightarrow V_i$ is separated for each V_i .

e.) If $X \rightarrow Y \rightarrow Z$ is separated, then $X \rightarrow Y$ is separated.

f.) If
$$X \to Y$$
 and $X' \to Y'$ are separated, so is
 $X \times_s X' \to Y \times_s Y'.$

Pf of c.): Suppose $T \rightarrow Y'$ and $U \rightarrow X \times_Y Y'$ are two morphisms as in the theorem, and suppose we have two maps $T \rightarrow X \times_Y Y'$ making the diagram commute:

Then we get two maps $T \rightarrow X$. Since $X \rightarrow Y$ is separated, these are the same. But then by the univ. property of fiber products, the maps $T \rightarrow X \times_{Y} Y'$ must be the same. D

The proofs of the others are similar.